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Abstract. For a given isaspedral (A ,  =0)  hierarchy of evolution equations, w e  propose a 
simple method ofconsrructing its corresponding non-isospearal ( A ,  = A", n 3 0 )  hierarchy 
of evolution equations closely related to 7-symmetries. It is crucial to find an initial Lax 
operator WO and an initial vector field go satisfying the key equation [WO, L] = L'[pO1 - I, 
in which L, i are spectral and identity operators, respectively. As examples, we present 
the corresponding non-isorpectra! hierarchies of equations and display the fundamental 
relations generating symmetry algebras for K W  hierarchy, AKNS hierarchy and a new 
integrable hierarchy. 

It is well known that, starting from a proper linear spectral problem L$ = A $  ( A  spectral 
parameter), we can generate a hierarchy of  isospectral (A ,  = O )  evolution equations 

Segur 1981, Newell 1985, Geng 1990, and Tu 1989a, b). Suppose that the spectral 
problem is not isospectral, i.e. A ,  # 0, for example, A, = A"(n a O ) ,  we can still generate 
a hierarchy of corresponding evolution equations (for instance, see Li 1982). Further- 
more, evolution equations of this kind are often solved still by IST (see, for example, 
Calogero and Degasperis 1978). 

In this letter, a non-isospectral hierarchy just means a series of evolution equations 
corresponding to A,  = A " ,  naO. We shall show that after we obtain an isospectral 
hierarchy, we can generate a non-isospectral hierarchy by a simple and clear approach. 
In general, the flows of the isospectral and non-isospectral hierarchies constitute a 
semi-product of a Kac-Moody algebra and the Virasoro algebra. Moreover, we can 
usually obtain hierarchies of 7-symmetries of the isospectral hierarchy from the non- 
isospectral hierarchy. We shall present three examples to show those. 

integrab!e by !he inverse sca!!e:ixg trznsfnrm (!ST) (see,  Fnr enamp!e, Ab!awi!z and 

For the matrix Schrodinger spectral problem 

L=-a,,+Q(x, t )  

( Q ( x ,  t )  is an N x N matrix) Bruschi and Ragnisco (1980) have constructed a class 
of non-isospectral evolution equations through some direct computations and extended 
the Lax method to the particular class of evolution equations. However, our approach 
is quite different from that oi Bruschi and Ragnisco, ana is universaiiy appiicabie, not 
only to the matrix Schrodinger spectral problem mentioned above but also to any other 
arbitrary spectral problem. Our example 1 shows a case of N = 1 in Bruschi and 
Ragnisco (1980) and the evolution operators B., n a0, given by our approach, make 
the series in neater form. 
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In the following we give some fundamental symbols and notations. Let x =  
(x', _.  . , x P ) T ~  RP, f E R,  u = ( u ' ,  . . . , u ~ ) ~ ,  ui= ui(x, I ) ,  l s i s  q. F o r a  =(aI,. . . , np),  
ai E Z, ai 0, 1 s i s p ,  write 

We denote by 93 all complex (or real) functions P[u] = P(x, r, U )  which are C"- 
differentiable with respect to x, I and C"-Gateaux differentiable with respect to U = u(x) 
(as functions of x), and let 9' = {( P,, . . . , P,)TIS E 9,1 s is r} .  We denote by Y' all 
linear operators (P = (P(x, t, U): BB'+ 93' which are C"-differentiable with respect to x, 
I and C"-Gateaux differentiable with respect to U = u(x), and by 7$ all matrix 
differential operators L =  L(x, 1, U): B'+ 9' with the following form 

For two vector fields X, Y E  %I9, define their product [X, Y] E 9' as follows 

J 
( 2 )  [X, Y] = X'[ Y]- Y[X] =- (x(u+EY)- Y(u +EX))Ir=O. 

aE 

Bowman (1987) has shown that (Bq, [  ., '1) constitutes a Lie algebra. The Gateaux 
derivative operator (P': Bq + Y' of an operator (PE Y' is defined by 

a 
a€ @ ' [ X I  Y =- @(U + EX) YI.=, X E 9 9  YEW.  (3) 

For (PE Y9, X E  W, the Lie derivative LX(Pe V4 is defined as follows 

(Lx(P) Y = (P[X,  Y] - [X, (P Y] YE w. (4) 

Furthermore it may be shown that 

L,@=(P'[X]-[X', (P]=O[X]-X'(P+(PX'. 

This kind of Lie derivative has a n  explicit geometrical meaning (see Magri 1980). 
Let a spectral operator L = L(x,  U )  E Y; and its Gateauxderivative operator L': aBU + 

Yk be an injective homomorphism. We consider the following linear spectral problem 

LJ, = A J ,  A is a spectral parameter. (6) 

Suppose that the spectral problem (6) and a series of auxiliary problems 

J,, = A d  A, E Y' m > O  (7) 

determine an isospectral hierarchy of integrable evolution equations 

U, = K ,  = W'fo (P€ " v q  f o E  Bq m 2 O .  (9) 

We first look for a pair of solutions WO€ V, go€ 9' of the following equation 

[WO, Ll = L'kol- I (9) 

where I is the identity operator from 93' to 9'. And then we can work out a hierarchy 
of evolution equations 

U, = U" = w g Q  n r O  (10) 
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where the operator @ is defined as in (8). We shall explain that the hierarchy (10) is 
generally a non-isospectral hierarchy of equations corresponding to A ,  = A ' ,  n 3 0. 

For any given vector field X E Bq, we construct an operator equation of V E  Y' 

[ v, L] = L ' [ @ X ]  - L'[ X ] L .  (11) 
Choose an operator solution V =  V ( X )  of the equation (11). Set W,,, = V ( u , ) , j  >O, 
and then we have 

[w,+,,Ll=L'[~,+,1-L'[u,lL j 3 0. (12) 

Further set B. =Z;=o W,L"-", n 2 0 .  By (9) and (12). we can calculate [B , ,  L ]  as follows 

1 [B. ,  L ]  = [ W,L"-J, L 
j - 0  

= [ w,, L]L"-' 
j = 0  

= ( L ' [ U ~ I  - r )L" + 1 (L'[u,,I - L ' [ ~ ~ + J  L"-J 

= L ' [ u - ] - L "  n 3 O .  
j = ,  

In this way, for any n 2 0, the evolution equation U, = U" is, by L, = L'lu,/, the compatibil- 
ity condition of the following problems 

L# = A* A ,  = A* 
(13) 

This shows the hierarchy (10) is just a non-isospectral hierarchy of evolution equations 
corresponding to A ,  = A", n a 0. 

By now, we have performed some formal manipulations with the non-isospectral 
hierarchy (IO). In the above skeleton, we only desire that there exists any solution of 
the operator equation (11). Generally, this condition is included in the existence of 
the isospectral hierarchy (8) and thus does not raise any new requirements. 

Besides, we point out that the operator @E Y' is usually a hereditary symmetry 
and often satisfies the following fundamental relations 

$, = B d .  

L,@@ = 0 L*"@ = P @[AI, 801 = [ f o ,  @go1 = yfo (14) 
where P = Z /3$', y = Z y;@' are two constant coefficient polynomials of the operator 
@. Based on (14) and according to the result of Tu (1989b), Ma (1990) or Oevel (1987), 
we can show that {U,,, =  go)^=, is a common hierarchy of the first-order master- 
symmetries (see Fuchssteiner 1983 for definition) for the isospectral hierarchy (8) and 
can further give the corresponding symmetry algebras. Next we shall not only solve 
the key equation (9), hut also display the solutions of the operator equation (1  1) and 
the relations (14) of the triple (@,&,go) for the KdV hierarchy, AKNS hierarchy and a 
new integrable hierarchy of equations. 

Example 1. We first consider the Kdv hierarchy of equations 

U, = K, =@*f0=@"hq x , r ~ R  m a 0  

where 

d 
dx 

@ = a2+4u +2u,a-' a=- 
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which is a hereditary symmetry. The hierarchy (15) corresponds to the following 
spectral operator 

L = a'+ 4u. (17) 
Obviously, we have L'[X] =4X, X E  8. Thus L' is injective and the corresponding 
equation (9) reads as 

(18) [ WO, L] = L'[g,] - 1 =4g,- 1. 

Choosing WO = P +  QJ, P, Q E 9, we have 

[ Wa, L]= (-4P,, +4u,Q+8uQX) -4(2Px+ Q,)J-2QXL. 

From this, we can easily obtain a pair of solutions W,, go of the equation (18) 

D - q +  d2~. (19) 
where d , ,  d2 are arbitrary constants. Moreover it is not difficult to show that the 
corresponding operator equation ( 1  1) has the following special solution 

-1 WO= d, + d2J 

v =  v ( x ) = - x + 2 ( J - ' x ) a  X E B .  

u, = u" = @"gu=W(a+d2ux) n > O  (20) 

Therefore the hierarchy of evolution equations 

is a hierarchy of non-isospectral equations with A, = A", n 2 0. In addition, it is easy 
to show that 

L&@ = 0 LSO@ = 1 ~ [ f o , g , l = [ f o , @ g , l = [ u , , ~ + f x ~ , l = ~ ~ f , .  

Example 2. Next we consider the AKNS hierarchy of equations 

with 

d 
J=- 

-rJX'r fa-  ra-'q dx 
-fJ+qJ-'r qJ-'q ] 

which is a hereditary symmetry. The AKNS hierarchy corresponds to the following 
spectral problem 

Evidently, we have 

Thus L' is injective and the corresponding equation (9) becomes 

[ W" , L] = L'[ go] - I = (24) 
- go2 
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In this way, by (24) we obtain 

P2 = P, = 0 P , ,  = -1  P4, = 1. 

and further obtain a pair of solutions of the equation (24)  

x + d ,  ] g , = ( l ~ + d ) [ ; ~ ]  

where d , ,  d2 are arbitrary constants and d = d2 - d , .  Moreover by a direct calculation, 
we may show that the corresponding operator equation (11) has the following special 
solution 

Therefore the following hierarchy of evolution equations 

U, =U" = Q'go =Q"(2x+  d )  [-;I n a 0  (26) 

is a hierarchy of non-isospectral equations with A, = A", n 2 0. In addition, we easily 
show that 

L&@ = 0 LEO@ = 1 

Q[f,,8,1=[f,,Qg,l=[f,,Q(--2xq,2xr)TI=[f,,(q+xq,, r+xrx)'1=0. 

Example 3. Finally we consider a new hierarchy of integrable evolution equations in 
Ma (1992a) (p = 1, q = 2) 

with the hereditary symmetry 

in which ai, 1 s i ~ 4 ,  are constants and LyIa2(aI -a2)a,(a4- 1) #0. The first nonlinear 
system in the hierarchy (27)  is as follows 

r, = - 2 a - 2 [ - r x x , + ~ ( a 4  - ~ ) ( r s ) , ]  

That hierarchy corresponds to the spectral problem 

which may be rewritten as the following Lax form 
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Obviously, the Gateaux derivative operator L' reads as 

and thus L' is injective. In this case, the equation (9) takes the form 

[ w, , L ]  = L'[ go] - I = (30) 

Let WO= [a 21, P I €  %,1 s i s 4  and we can obtain a pair of solutions of (30): 

In addition, it may he shown by a direct ca!cu!a!lon that the corresponding nperzar 
equation (11) has the first-order differential operator solution with the following special 
form 

with 

. 
Therefore according to our earlier result, we see that the hierarchy of evolution 
equations 

0 
U$ =U" =@"go=@" n P O  

is 2 hierarchy of non-isospec!re! eq!!atians COrrespOnding !O A, =A",  2 z 0. 
In this case, it may be similarly proved that 

(34) 
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From these, we easily see that the evolution equation U, = K ,  ( / B O )  possesses a 
hierarchy of K-symmetries {K,,):=,  and a hierarchy of 7-symmetries {T'." = t [K , ,  U"] + 
un)7=,,, and that these two hierarchies of symmetries constitute an infinite-dimensional 
Lie algebra (a semi-product of span{ K ,  I m P 0} and span{.r'." I n P O ) ) :  

[ K , ,  K.]  = 0, m, n P 0 

[ K , ,  ? l = ( m +  1)K,+,-, K , = O  m,naO 

[ TZ',  7(.1'] = ( m  - n ) T Z ) + - ,  7!!1=0 m , n > O .  

Apart from the above results, we have shown in Ma (1992b) that the integrable 
hierarchy (27) possesses the bi-Hamiltonian structures 

with the Hamiltonian pail 

and the Hamiltonian functions 

a H,= -- m r O .  
( m + l ) a m + *  

Here am, m B 2, are determined by the recursion formula 

b,,=c,=O a,= 1 

a,, = rc, - a 3 b ,  

b,, = a~,+, T cmq - i)& - ; io,  
m 3 0. 

L I ,  

c,,, = -nc,+, -(a4- l)sc, ,+2a3a, 

Moreover there exists a Lax operator algebra, analogous to Lax operator algebras of 
Kdvand AKNS hierarchies (see Chengand Li 1991,Zhang and Cheng 1990), correspond- 
ing to the integrable hierarchy (27). which is left to a later paper. 

The author would like to express his sincere thanks to Professors Chaohao G u  and 
Hesheng Hu for their guidance. This work was supported by the National Postdoctoral 
Science Foundation of the People's Republic of China. 
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